CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2014 series

0444 MATHEMATICS (US)

www.PapaCambridge.com

0444/21

Paper 2, maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2		Mark Scheme	Syllabus
		IGCSE – May/June 2014	0444
Abbre	viations		Cambridge
cao	correct ans	swer only	O.
cso	correct sol	lution only	1 2
dep	dependent		- co
ft	follow thre	ough after error	-On
isw	ignore sub	sequent working	
oe	or equival	ent	
SC	Special Ca	ase	

Abbreviations

without wrong working seen or implied www

soi

	Qu.	Answers	Mark	Part Marks
1		$1\frac{1}{4}$ oe	2	B1 for $\frac{3}{4}$ oe or $\frac{1}{2}$ oe
2		[0]. 06 oe	2	B1 for [0].05 oe or [0].01 oe
3		30	2	M1 for $n - 8 = 22$ or $\frac{n}{2} = 15$
4	(a)	$\frac{5\times 2}{20}$	1	
	(b)	$0.5 \text{ or } \frac{1}{2} \text{ cao}$	1	
5	(a)	18	1	
	(b)	$5\sqrt{6}$	2	B1 for $2\sqrt{6}$ or $3\sqrt{6}$
6		20	3	M1 for 80 × 1.5 And M1 for (their 120 – 88) ÷ 1.6
7		$4 \pm \sqrt{y - 6}$	3	M1 for <i>their</i> 6 moved correctly M1 for <i>their</i> √ taken correctly M1 for <i>their</i> 4 moved correctly
8		$\frac{2}{x(x+1)}$	3	B1 for common denominator $x(x+1)$ seen. M1 for $2(x+1) - 2x$ oe or better
9	(a)	119	3	M2 for 18 × 6 + 11 oe or B1 for 18 or 11 or 108
	(b)	[0] 1 [00] pm cao	1	

		my
Page 3	Mark Scheme	Syllabus
	IGCSE – May/June 2014	0444

10	(a)	(a+b)(x+y)	2	B1 for $a(x + y) + b(x + y)$ or $x(a + b) + y(a + b)$
	(b)	(x-1)(3x-2)	2	B1 for $a(x+y) + b(x+y)$ or $x(a+b) + y(a+b)$ B1 for $(x-1)(3(x-1)+1)$ If B0 then SC1for $(x+a)(3x+b)$ where $3a+b=-5$ or $ab=2$ or $3(x-1)(x-\frac{2}{3})$
11		$\frac{5}{24}$ oe	3	M2 for $\frac{1}{4} \times \frac{2}{6} + \frac{3}{4} \times \frac{1}{6}$ or better
				or M1 for one of these products
12	(a)	2×10^{10}	2	B1 for 20×10^9 or 20000000000
	(b)	1.25×10^{-1}	2	B1 for 0.125 oe
13	(a)	32	2	B1 for $AOC = 116$
	(b)	35	2	B1 for $CDA = 122$
14		$y = \frac{2}{3}x - 2 \text{oe}$	4	B1 for (9, 4) and
				M2 for $y = kx - 2$ $(k \ne 0)$ or $y = \frac{2}{3}x + k$ $(k \ne 0)$
				or $\frac{2}{3}x - 2$
				or M1 for $y = \frac{2}{3}x$ or $\frac{2}{3}x + k$ $(k \neq 0)$
15		[0], 1, 2, 3	4	M1 for moving the 5 correctly M1 for collecting <i>their</i> terms
				A1 for a correct inequality for $x \in [0 \le] x < 4$
16	(a)	8	2	B1 for 2 ¹² or 4096
	(b)	$2q^{\frac{3}{2}}$	3	B2 for $kq^{\frac{3}{2}}$ as the answer or
				B1 for $2q^2$ and B1 for $q^{\frac{1}{2}}$ oe nfww
17	(a)	correct working	2	M1 for 1 holiday = 5 or 360 ÷ 72 = 5 and B1 for 24 × 5 [= 120] or
				M2 for $\frac{24}{72} \times 360$ [=120] oe
	(b)	6	3	M1 for $150 + 120 + x + 2x = 360$ oe A1 for 30 identified as the required angle

		mm
Page 4	Mark Scheme	Syllabus
_	IGCSE – May/June 2014	0444

				a di
18	(a)	correct working	2	B2 for $\sqrt[3]{\frac{1}{8}} = \frac{1}{2}$ or $\sqrt[3]{8} = 2$ AND $\frac{10}{2} = 5$ oe and oe or
				oe or
				B1 for $\sqrt[3]{\frac{1}{8}}$ or $\sqrt[3]{8}$ or $8 = 2^3$ or $\frac{1}{8} = (\frac{1}{2})^3$
	(b)	56	4	M3 for $\frac{7}{8} \times \frac{1}{3} \times \pi \times 4^2 \times 12$ oe
				or
				M1 for $\frac{1}{3} \times \pi \times 4^2 \times 12$ oe
				M1 for $\frac{1}{3} \times \pi \times 2^2 \times 6$ oe
				M1 for subtracting <i>their</i> volumes
19		$12-4\sqrt{3}+\frac{4}{3}\pi$	7	B2 for $BC = 4$ or M1 for 8 cos 60 oe or B1 for sin 30 or cos $60 = \frac{1}{2}$ or $AE = 4$
				and
				B2 for $[DC =]8 - 8\frac{\sqrt{3}}{2}$ oe
				or M1 for 8 – 8sin 60 oe
				or B1 for sin 60 or cos $30 = \frac{\sqrt{3}}{2}$ or [<i>DE</i> =] 8sin 60 oe
				and
				B2 for $[DB =] \frac{4}{3}\pi$
				or M1 for $\frac{30}{360} \times \pi \times 16$ oe